Publications

 

Bauer PO et al.: Neurons Induced From Fibroblasts of c9ALS/FTD Patients Reproduce the Pathology Seen in the Central Nervous System.

Front Neurosci. 2019, 13:935. doi: 10.3389/fnins.2019.00935.

 

Petrenko Y et al.Clinically Relevant Solution for the Hypothermic Storage and Transportation of Human Multipotent Mesenchymal Stromal Cells.

Stem Cells Int. 2019 Jan 20;2019:5909524. doi: 10.1155/2019/5909524

 

Tabata E et al.: High expression of acidic chitinase and chitin digestibility in the stomach of common marmoset (Callithrix jacchus), an insectivorous nonhuman primate.

Sci Rep. 2019 Jan 17;9(1):159. doi: 10.1038/s41598-018-36477-y.

 

Uehara M et al.: Chitinase mRNA Levels Determined by QPCR in Crab-Eating Monkey (Macaca fascicularis) Tissues: Species-Specific Expression of Acidic Mammalian Chitinase and Chitotriosidase.

Genes (Basel). 2018 May 9;9(5). pii: E244. doi: 10.3390/genes9050244.

 

Tabata E et al.: Acidic Chitinase-Chitin Complex Is Dissociated in a Competitive Manner by Acetic Acid: Purification of Natural Enzyme for Supplementation Purposes.

Int J Mol Sci. 2018 Jan 25;19(2). pii: E362. doi: 10.3390/ijms19020362.

 

Tabata E et al.: Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs.

Sci Rep. 2018 Jan 23;8(1):1461. doi: 10.1038/s41598-018-19940-8.
 

Tabata E et al.: Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources.

Sci Rep. 2017 Oct 11;7(1):12963. doi: 10.1038/s41598-017-13526-6.
 

Wakita S et al.: Mouse acidic mammalian chitinase exhibits transglycosylation activity at somatic tissue pH.

FEBS Lett. 2017 Oct;591(20):3310-3318. doi: 10.1002/1873-3468.12798. 
 

Tabata E et al.: Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry.

Sci Rep. 2017 Jul 27;7(1):6662. doi: 10.1038/s41598-017-07146-3.
 

Wakita S et al.: Improved fluorescent labeling of chitin oligomers: Chitinolytic properties of acidic mammalian chitinase under somatic tissue pH conditions.

Carbohydr Polym. 2017 May 15;164:145-153. doi: 10.1016/j.carbpol.2017.01.095. 
 

Tuček L et al.: The Osteogenic Potential of Human Nondifferentiated and Pre-differentiated Mesenchymal Stem Cells Combined with an Osteoconductive Scaffold - Early Stage Healing.

Acta Medica (Hradec Kralove). 2017;60(1):12-18. doi: 10.14712/18059694.2017.43. 

 

Havlas V et al.: Use of cultured human autologous bone marrow stem cells in repair of a rotator cuff tear: preliminary results of a safety study.

Acta Chir Orthop Traumatol Cech. 2015;82(3):229-34.
 

Šponer P et al.: Utilizing Autologous Multipotent Mesenchymal Stromal Cells and β-Tricalcium Phosphate Scaffold in Human Bone Defects: A Prospective, Controlled Feasibility Trial

Biomed Res Int. 2016;2016:2076061. doi: 10.1155/2016/2076061. 

 

Stefanis AJ et al.: Stromal Vascular Fraction and its Role in the Management of Alopecia: A Review.

J Clin Aesthet Dermatol. 2019 Nov;12(11):35-44. Epub 2019 Nov 1.

 

Tabata E et al.: Residues of acidic chitinase cause chitinolytic activity degrading chitosan in porcine pepsin preparations.

Sci Rep. 2019 Oct 30;9(1):15609. doi: 10.1038/s41598-019-52136-2.

 

Kimura M et al.: Direct comparison of chitinolytic properties and determination of combinatory effects of mouse chitotriosidase and acidic mammalian chitinase.

Int J Biol Macromol. 2019 Aug 1;134:882-890. doi: 10.1016/j.ijbiomac.2019.05.097. Epub 2019 May 17.

 

Potockova H et al.: Note on the regulation of veterinary medical devices in the EU: A review of the current situation and its impact on animal health and safety.

Animal Welfare. 2020 Feb 22;29(1):37-43 doi: 10.7120/09627286.29.1.037

 

 

© 2024 Bioinova, a.s.
CIN: 28452682

| +420 241 063 352

Please publish modules in offcanvas position.